Relative Comparison Kernel Learning with Auxiliary Kernels
نویسندگان
چکیده
In this work we consider the problem of learning a positive semidefinite kernel matrix from relative comparisons of the form: “object A is more similar to object B than it is to C”, where comparisons are given by humans. Existing solutions to this problem assume many comparisons are provided to learn a high quality kernel. However, this can be considered unrealistic for many real-world tasks since a large amount of human input is often costly or difficult to obtain. Because of this, only a limited number of these comparisons may be provided. We propose a new kernel learning approach that supplements the few relative comparisons with “auxiliary” kernels built from more easily extractable features in order to learn a kernel that more completely models the notion of similarity gained from human feedback. Our proposed formulation is a convex optimization problem that adds only minor overhead to methods that use no auxiliary information. Empirical results show that in the presence of few training relative comparisons, our method can learn kernels that generalize to more out-of-sample comparisons than methods that do not utilize auxiliary information, as well as similar methods that learn metrics over objects.
منابع مشابه
Composite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملMultiple Kernel Machines Using Localized Kernels
Multiple kernel learning (Mkl) uses a convex combination of kernels where the weight of each kernel is optimized during training. However, Mkl assigns the same weight to a kernel over the whole input space. Localized multiple kernel learning (Lmkl) framework extends the Mkl framework to allow combining kernels with different weights in different regions of the input space by using a gating mode...
متن کاملSome Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
متن کاملLearning the kernel matrix via predictive low-rank approximations
Efficient and accurate low-rank approximations to multiple data sources are essential in the era of big data. The scaling of kernel-based learning algorithms to large datasets is limited by the O(n) complexity associated with computation and storage of the kernel matrix, which is assumed to be available in most recent multiple kernel learning algorithms. We propose a method to learn simultaneou...
متن کامل